Title: | Utilities for Developing Data Science Software |
---|---|
Description: | Some general helper functions that I (and maybe others) find useful when developing data science software. |
Authors: | Lennart Oelschläger [aut, cre] |
Maintainer: | Lennart Oelschläger <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.7.1 |
Built: | 2024-12-27 06:00:05 UTC |
Source: | https://github.com/loelschlaeger/oeli |
These functions check whether the input fulfills the properties of a correlation matrix.
check_correlation_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps)) assert_correlation_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_correlation_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))
check_correlation_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps)) assert_correlation_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_correlation_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))
x |
[any] |
dim |
[ |
tolerance |
[ |
.var.name |
[ |
add |
[ |
Same as documented in check_matrix
.
Other matrix helpers:
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
M <- matrix(c(1, 0.9, 0.9, 0.9, 1, -0.9, 0.9, -0.9, 1), nrow = 3) check_correlation_matrix(M) test_correlation_matrix(M) ## Not run: assert_correlation_matrix(M) ## End(Not run)
M <- matrix(c(1, 0.9, 0.9, 0.9, 1, -0.9, 0.9, -0.9, 1), nrow = 3) check_correlation_matrix(M) test_correlation_matrix(M) ## Not run: assert_correlation_matrix(M) ## End(Not run)
These functions check whether the input fulfills the properties of a covariance matrix.
check_covariance_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps)) assert_covariance_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_covariance_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))
check_covariance_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps)) assert_covariance_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_covariance_matrix(x, dim = NULL, tolerance = sqrt(.Machine$double.eps))
x |
[any] |
dim |
[ |
tolerance |
[ |
.var.name |
[ |
add |
[ |
Same as documented in check_matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
M <- matrix(c(1, 2, 3, 2, 1, 2, 3, 2, 1), nrow = 3) check_covariance_matrix(M) test_covariance_matrix(M) ## Not run: assert_covariance_matrix(M) ## End(Not run)
M <- matrix(c(1, 2, 3, 2, 1, 2, 3, 2, 1), nrow = 3) check_covariance_matrix(M) test_covariance_matrix(M) ## Not run: assert_covariance_matrix(M) ## End(Not run)
These functions check whether the input is a list that contains list elements.
check_list_of_lists(x, len = NULL) assert_list_of_lists( x, len = NULL, .var.name = checkmate::vname(x), add = NULL ) test_list_of_lists(x, len = NULL)
check_list_of_lists(x, len = NULL) assert_list_of_lists( x, len = NULL, .var.name = checkmate::vname(x), add = NULL ) test_list_of_lists(x, len = NULL)
x |
[any] |
len |
[ |
.var.name |
[ |
add |
[ |
Same as documented in check_list
.
Other list helpers:
merge_lists()
L <- list(list(1), list(2), 3) check_list_of_lists(L) test_list_of_lists(L) ## Not run: assert_list_of_lists(L) ## End(Not run)
L <- list(list(1), list(2), 3) check_list_of_lists(L) test_list_of_lists(L) ## Not run: assert_list_of_lists(L) ## End(Not run)
These functions check whether the input is a numeric vector.
check_numeric_vector( x, lower = -Inf, upper = Inf, finite = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, sorted = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE ) assert_numeric_vector( x, lower = -Inf, upper = Inf, finite = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, sorted = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE, .var.name = checkmate::vname(x), add = NULL ) test_numeric_vector( x, lower = -Inf, upper = Inf, finite = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, sorted = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE )
check_numeric_vector( x, lower = -Inf, upper = Inf, finite = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, sorted = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE ) assert_numeric_vector( x, lower = -Inf, upper = Inf, finite = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, sorted = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE, .var.name = checkmate::vname(x), add = NULL ) test_numeric_vector( x, lower = -Inf, upper = Inf, finite = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, sorted = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE )
x |
[any] |
lower |
[ |
upper |
[ |
finite |
[ |
any.missing |
[ |
all.missing |
[ |
len |
[ |
min.len |
[ |
max.len |
[ |
unique |
[ |
sorted |
[ |
names |
[ |
typed.missing |
[ |
null.ok |
[ |
.var.name |
[ |
add |
[ |
Same as documented in check_numeric
.
Other vector helpers:
check_probability_vector()
,
chunk_vector()
,
insert_vector_entry()
,
map_indices()
,
match_numerics()
,
permutations()
,
split_vector_at()
,
subsets()
,
vector_occurrence()
x <- c(1, 2, "3") check_numeric_vector(x) test_numeric_vector(x) ## Not run: assert_numeric_vector(x) ## End(Not run)
x <- c(1, 2, "3") check_numeric_vector(x) test_numeric_vector(x) ## Not run: assert_numeric_vector(x) ## End(Not run)
These functions check whether the input fulfills the properties of a probability matrix.
check_probability_vector(x, len = NULL, tolerance = sqrt(.Machine$double.eps)) assert_probability_vector( x, len = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_probability_vector(x, len = NULL, tolerance = sqrt(.Machine$double.eps))
check_probability_vector(x, len = NULL, tolerance = sqrt(.Machine$double.eps)) assert_probability_vector( x, len = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_probability_vector(x, len = NULL, tolerance = sqrt(.Machine$double.eps))
x |
[any] |
len |
[ |
tolerance |
[ |
.var.name |
[ |
add |
[ |
Same as documented in check_numeric
.
Other vector helpers:
check_numeric_vector()
,
chunk_vector()
,
insert_vector_entry()
,
map_indices()
,
match_numerics()
,
permutations()
,
split_vector_at()
,
subsets()
,
vector_occurrence()
p <- c(0.2, 0.3, 0.6) check_probability_vector(p) test_probability_vector(p) ## Not run: assert_probability_vector(p) ## End(Not run)
p <- c(0.2, 0.3, 0.6) check_probability_vector(p) test_probability_vector(p) ## Not run: assert_probability_vector(p) ## End(Not run)
These functions check whether the input is a transition probability matrix.
check_transition_probability_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps) ) assert_transition_probability_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_transition_probability_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps) )
check_transition_probability_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps) ) assert_transition_probability_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps), .var.name = checkmate::vname(x), add = NULL ) test_transition_probability_matrix( x, dim = NULL, tolerance = sqrt(.Machine$double.eps) )
x |
[any] |
dim |
[ |
tolerance |
[ |
.var.name |
[ |
add |
[ |
Same as documented in check_matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
T <- matrix(c(0.8, 0.2, 0.1, 0.1, 0.7, 0.4, 0.1, 0.1, 0.6), nrow = 3) check_transition_probability_matrix(T) test_transition_probability_matrix(T) ## Not run: assert_transition_probability_matrix(T) ## End(Not run)
T <- matrix(c(0.8, 0.2, 0.1, 0.1, 0.7, 0.4, 0.1, 0.1, 0.6), nrow = 3) check_transition_probability_matrix(T) test_transition_probability_matrix(T) ## Not run: assert_transition_probability_matrix(T) ## End(Not run)
This function either
splits a vector into n
chunks of equal size (type = 1
),
splits a vector into chunks of size n
(type = 2
).
chunk_vector(x, n, type = 1, strict = FALSE)
chunk_vector(x, n, type = 1, strict = FALSE)
x |
[atomic()'] |
n |
[ |
type |
[
|
strict |
[ |
A list
.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
insert_vector_entry()
,
map_indices()
,
match_numerics()
,
permutations()
,
split_vector_at()
,
subsets()
,
vector_occurrence()
x <- 1:12 chunk_vector(x, n = 3, type = 1) chunk_vector(x, n = 3, type = 2) try(chunk_vector(x, n = 5, strict = TRUE))
x <- 1:12 chunk_vector(x, n = 3, type = 1) chunk_vector(x, n = 3, type = 2) try(chunk_vector(x, n = 5, strict = TRUE))
These functions compute the Cholesky root elements of a covariance matrix and, conversely, build a covariance matrix from its Cholesky root elements.
cov_to_chol(cov, unique = TRUE) chol_to_cov(chol) unique_chol(chol)
cov_to_chol(cov, unique = TRUE) chol_to_cov(chol) unique_chol(chol)
cov |
[ It can also be the zero matrix, in which case the Cholesky root is defined as the zero matrix. |
unique |
[ |
chol |
[ |
For cov_to_chol
a numeric
vector
of Cholesky root
elements.
For chol_to_cov
a covariance matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
cov <- sample_covariance_matrix(4) chol <- cov_to_chol(cov) all.equal(cov, chol_to_cov(chol))
cov <- sample_covariance_matrix(4) chol <- cov_to_chol(cov) all.equal(cov, chol_to_cov(chol))
The function ddirichlet()
computes the density of a Dirichlet distribution.
The function rdirichlet()
samples from a Dirichlet distribution.
The functions with suffix _cpp
perform no input checks, hence are faster.
ddirichlet_cpp(x, concentration, log = FALSE) rdirichlet_cpp(concentration) ddirichlet(x, concentration, log = FALSE) rdirichlet(n = 1, concentration)
ddirichlet_cpp(x, concentration, log = FALSE) rdirichlet_cpp(concentration) ddirichlet(x, concentration, log = FALSE) rdirichlet(n = 1, concentration)
x |
[ |
concentration |
[ |
log |
[ |
n |
[ |
For ddirichlet()
: The density value.
For rdirichlet()
: If n = 1
a vector
of length p
, else
a matrix
of dimension n
times p
with samples as rows.
Other simulation helpers:
correlated_regressors()
,
dmvnorm_cpp()
,
dtnorm_cpp()
,
dwishart_cpp()
,
simulate_markov_chain()
x <- c(0.5, 0.3, 0.2) concentration <- 1:3 # compute density ddirichlet(x = x, concentration = concentration) ddirichlet(x = x, concentration = concentration, log = TRUE) # sample rdirichlet(concentration = 1:3) rdirichlet(n = 4, concentration = 1:2)
x <- c(0.5, 0.3, 0.2) concentration <- 1:3 # compute density ddirichlet(x = x, concentration = concentration) ddirichlet(x = x, concentration = concentration, log = TRUE) # sample rdirichlet(concentration = 1:3) rdirichlet(n = 4, concentration = 1:2)
data.frame
columnsThis function deletes columns of a data.frame
by name.
delete_columns_data.frame(df, column_names)
delete_columns_data.frame(df, column_names)
df |
[ |
column_names |
[ |
The input df
without the columns defined by column_names
.
Other data.frame helpers:
group_data.frame()
,
round_data.frame()
df <- data.frame("label" = c("A", "B"), "number" = 1:10) delete_columns_data.frame(df = df, column_names = "label") delete_columns_data.frame(df = df, column_names = "number") delete_columns_data.frame(df = df, column_names = c("label", "number"))
df <- data.frame("label" = c("A", "B"), "number" = 1:10) delete_columns_data.frame(df = df, column_names = "label") delete_columns_data.frame(df = df, column_names = "number") delete_columns_data.frame(df = df, column_names = c("label", "number"))
Provides a simple key-value interface based on R6.
keys
[character()
]
Available keys.
alias
[list()
]
Available keys per alias value.
new()
Initializing a new Dictionary
object.
Dictionary$new( key_name, alias_name = NULL, value_names = character(), value_assert = alist(), allow_overwrite = TRUE, keys_reserved = character(), alias_choices = NULL, dictionary_name = NULL )
key_name
[character(1)
]
The name for the key variable.
alias_name
[NULL
| character(1)
]
Optionally the name for the alias variable.
value_names
[character(0)
]
The names of the values connected to a key.
value_assert
[alist(1)
]
For each element in value_names
, values_assert
can have an
identically named element of the form checkmate::assert_*(...)
, where
...
can be any argument for the assertion function except for the
x
argument.
allow_overwrite
[logical(1)
]
Allow overwriting existing keys with new values?
Duplicate keys are never allowed.
keys_reserved
[character()
]
Names that must not be used as keys.
alias_choices
[NULL
or character()
]
Optionally possible values for the alias. Can also be NULL
, then all
alias values are allowed.
dictionary_name
[NULL
or character()
]
Optionally the name for the dictionary.
add()
Adding an element to the dictionary.
Dictionary$add(...)
...
Values for
the key variable key_name
(must be a single character
),
the alias variable alias_name
(optionally, must then be a
character
vector
),
all the variables specified for value_names
(if any, they must
comply to the value_assert
checks).
get()
Getting elements from the dictionary.
Dictionary$get(key, value = NULL)
key
[character(1)
]
A value for the key variable key_name
. Use the $keys
method for
available keys.
value
[NULL
| character(1)
]
One of the elements in value_names
, selecting the required value.
Can also be NULL
(default) for all values connected to the
key
, returned as a list
.
remove()
Removing elements from the dictionary (and associated alias, if any).
Dictionary$remove(key)
key
[character(1)
]
A value for the key variable key_name
. Use the $keys
method for
available keys.
print()
Printing details of the dictionary.
Dictionary$print()
Other package helpers:
Storage
,
identical_structure()
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
unexpected_error()
,
user_confirm()
# TODO
# TODO
These functions difference and un-difference random vectors and covariance matrices.
diff_cov(cov, ref = 1) undiff_cov(cov_diff, ref = 1) delta(ref = 1, dim) M(ranking = seq_len(dim), dim)
diff_cov(cov, ref = 1) undiff_cov(cov_diff, ref = 1) delta(ref = 1, dim) M(ranking = seq_len(dim), dim)
cov , cov_diff
|
[ |
ref |
[ |
dim |
[ |
ranking |
[ |
Assume is a multivariate normally distributed
random vector of dimension
. We may want to consider the differenced
vector
excluding
the th element (hence,
is of dimension
). Formally,
, where
is a difference operator that depends on the reference
row
. More precise,
is the identity matrix of dimension
without row
and with
s in column
.
The difference operator
can be computed via
delta(ref = k, dim = n)
.
Then, , where
is the differenced covariance matrix with respect to row .
The differenced covariance matrix
can be computed via
diff_delta(Sigma, ref = k)
.
Since is a non-bijective mapping,
cannot be
uniquely restored from
. However, it is possible to
compute a non-unique solution
, such that
. For such a non-unique
solution, we add a column and a row of zeros
at column and row number
to
, respectively.
An "un-differenced" covariance matrix
can be computed via
undiff_delta(Sigma_diff, ref = k)
.
As a alternative to , the function
M()
returns a matrix for
taking differences such that the resulting vector is negative.
A (differenced or un-differenced) covariance matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
n <- 4 Sigma <- sample_covariance_matrix(dim = n) k <- 2 x <- c(1, 3, 2, 4) # build difference operator delta_k <- delta(ref = k, dim = n) # difference vector delta_k %*% x # difference Sigma (Sigma_diff <- diff_cov(Sigma, ref = k)) # un-difference Sigma (Sigma_0 <- undiff_cov(Sigma_diff, ref = k)) # difference again Sigma_diff_2 <- diff_cov(Sigma_0, ref = k) all.equal(Sigma_diff, Sigma_diff_2) # difference such that the resulting vector is negative M(ranking = order(x, decreasing = TRUE), dim = n) %*% x
n <- 4 Sigma <- sample_covariance_matrix(dim = n) k <- 2 x <- c(1, 3, 2, 4) # build difference operator delta_k <- delta(ref = k, dim = n) # difference vector delta_k %*% x # difference Sigma (Sigma_diff <- diff_cov(Sigma, ref = k)) # un-difference Sigma (Sigma_0 <- undiff_cov(Sigma_diff, ref = k)) # difference again Sigma_diff_2 <- diff_cov(Sigma_0, ref = k) all.equal(Sigma_diff, Sigma_diff_2) # difference such that the resulting vector is negative M(ranking = order(x, decreasing = TRUE), dim = n) %*% x
The function dmvnorm()
computes the density of a multivariate normal
distribution.
The function rmvnorm()
samples from a multivariate normal distribution.
The functions with suffix _cpp
perform no input checks, hence are faster.
The univariate normal distribution is available as the special case p = 1
.
dmvnorm_cpp(x, mean, Sigma, log = FALSE) rmvnorm_cpp(mean, Sigma, log = FALSE) dmvnorm(x, mean, Sigma, log = FALSE) rmvnorm(n = 1, mean, Sigma, log = FALSE)
dmvnorm_cpp(x, mean, Sigma, log = FALSE) rmvnorm_cpp(mean, Sigma, log = FALSE) dmvnorm(x, mean, Sigma, log = FALSE) rmvnorm(n = 1, mean, Sigma, log = FALSE)
x |
[ |
mean |
[ For |
Sigma |
[ It can also be a zero matrix. For For |
log |
[ For |
n |
[ |
For dmvnorm()
: The density value.
For rmvnorm()
: If n = 1
a vector
of length p
(note
that it is a column vector for rmvnorm_cpp()
), else
a matrix
of dimension n
times p
with samples as rows.
Other simulation helpers:
correlated_regressors()
,
ddirichlet_cpp()
,
dtnorm_cpp()
,
dwishart_cpp()
,
simulate_markov_chain()
x <- c(0, 0) mean <- c(0, 0) Sigma <- diag(2) # compute density dmvnorm(x = x, mean = mean, Sigma = Sigma) dmvnorm(x = x, mean = mean, Sigma = Sigma, log = TRUE) # sample rmvnorm(n = 3, mean = mean, Sigma = Sigma) rmvnorm(mean = mean, Sigma = Sigma, log = TRUE)
x <- c(0, 0) mean <- c(0, 0) Sigma <- diag(2) # compute density dmvnorm(x = x, mean = mean, Sigma = Sigma) dmvnorm(x = x, mean = mean, Sigma = Sigma, log = TRUE) # sample rmvnorm(n = 3, mean = mean, Sigma = Sigma) rmvnorm(mean = mean, Sigma = Sigma, log = TRUE)
This function measures the computation time of a call.
do.call_timed(what, args, units = "secs")
do.call_timed(what, args, units = "secs")
what , args
|
Passed to |
units |
Passed to |
This function is a wrapper for do.call
.
A list of the two elements "result"
(the results of the do.call
call) and "time"
(the computation time).
Other function helpers:
function_arguments()
,
function_body()
,
function_defaults()
,
quiet()
,
timed()
,
try_silent()
,
variable_name()
## Not run: what <- function(s) { Sys.sleep(s) return(s) } args <- list(s = 1) do.call_timed(what = what, args = args) ## End(Not run)
## Not run: what <- function(s) { Sys.sleep(s) return(s) } args <- list(s = 1) do.call_timed(what = what, args = args) ## End(Not run)
The function dtnorm()
computes the density of a truncated normal
distribution.
The function rtnorm()
samples from a truncated normal distribution.
The function dttnorm()
and rttnorm()
compute the density and sample from
a two-sided truncated normal distribution, respectively.
The functions with suffix _cpp
perform no input checks, hence are faster.
dtnorm_cpp(x, mean, sd, point, above, log = FALSE) dttnorm_cpp(x, mean, sd, lower, upper, log = FALSE) rtnorm_cpp(mean, sd, point, above, log = FALSE) rttnorm_cpp(mean, sd, lower, upper, log = FALSE) dtnorm(x, mean, sd, point, above, log = FALSE) dttnorm(x, mean, sd, lower, upper, log = FALSE) rtnorm(mean, sd, point, above, log = FALSE) rttnorm(mean, sd, lower, upper, log = FALSE)
dtnorm_cpp(x, mean, sd, point, above, log = FALSE) dttnorm_cpp(x, mean, sd, lower, upper, log = FALSE) rtnorm_cpp(mean, sd, point, above, log = FALSE) rttnorm_cpp(mean, sd, lower, upper, log = FALSE) dtnorm(x, mean, sd, point, above, log = FALSE) dttnorm(x, mean, sd, lower, upper, log = FALSE) rtnorm(mean, sd, point, above, log = FALSE) rttnorm(mean, sd, lower, upper, log = FALSE)
x |
[ |
mean |
[ |
sd |
[ |
point , lower , upper
|
[ |
above |
[ |
log |
[ |
For dtnorm()
and dttnorm()
: The density value.
For rtnorm()
and rttnorm()
: The random draw
Other simulation helpers:
correlated_regressors()
,
ddirichlet_cpp()
,
dmvnorm_cpp()
,
dwishart_cpp()
,
simulate_markov_chain()
x <- c(0, 0) mean <- c(0, 0) Sigma <- diag(2) # compute density dmvnorm(x = x, mean = mean, Sigma = Sigma) dmvnorm(x = x, mean = mean, Sigma = Sigma, log = TRUE) # sample rmvnorm(n = 3, mean = mean, Sigma = Sigma) rmvnorm(mean = mean, Sigma = Sigma, log = TRUE)
x <- c(0, 0) mean <- c(0, 0) Sigma <- diag(2) # compute density dmvnorm(x = x, mean = mean, Sigma = Sigma) dmvnorm(x = x, mean = mean, Sigma = Sigma, log = TRUE) # sample rmvnorm(n = 3, mean = mean, Sigma = Sigma) rmvnorm(mean = mean, Sigma = Sigma, log = TRUE)
The function dwishart()
computes the density of a Wishart distribution.
The function rwishart()
samples from a Wishart distribution.
The functions with suffix _cpp
perform no input checks, hence are faster.
dwishart_cpp(x, df, scale, log = FALSE, inv = FALSE) rwishart_cpp(df, scale, inv = FALSE) dwishart(x, df, scale, log = FALSE, inv = FALSE) rwishart(df, scale, inv = FALSE)
dwishart_cpp(x, df, scale, log = FALSE, inv = FALSE) rwishart_cpp(df, scale, inv = FALSE) dwishart(x, df, scale, log = FALSE, inv = FALSE) rwishart(df, scale, inv = FALSE)
x |
[ |
df |
[ |
scale |
[ |
log |
[ |
inv |
[ |
For dwishart()
: The density value.
For rwishart()
: A matrix
, the random draw.
Other simulation helpers:
correlated_regressors()
,
ddirichlet_cpp()
,
dmvnorm_cpp()
,
dtnorm_cpp()
,
simulate_markov_chain()
x <- diag(2) df <- 4 scale <- diag(2) # compute density dwishart(x = x, df = df, scale = scale) dwishart(x = x, df = df, scale = scale, log = TRUE) dwishart(x = x, df = df, scale = scale, inv = TRUE) # sample rwishart(df = df, scale = scale) rwishart(df = df, scale = scale, inv = TRUE)
x <- diag(2) df <- 4 scale <- diag(2) # compute density dwishart(x = x, df = df, scale = scale) dwishart(x = x, df = df, scale = scale, log = TRUE) dwishart(x = x, df = df, scale = scale, inv = TRUE) # sample rwishart(df = df, scale = scale) rwishart(df = df, scale = scale, inv = TRUE)
This function returns the names of function arguments.
function_arguments(f, with_default = TRUE, with_ellipsis = TRUE)
function_arguments(f, with_default = TRUE, with_ellipsis = TRUE)
f |
[ |
with_default |
[ |
with_ellipsis |
[ |
A character
vector.
Other function helpers:
do.call_timed()
,
function_body()
,
function_defaults()
,
quiet()
,
timed()
,
try_silent()
,
variable_name()
f <- function(a, b = 1, c = "", ...) { } function_arguments(f) function_arguments(f, with_default = FALSE) function_arguments(f, with_ellipsis = FALSE)
f <- function(a, b = 1, c = "", ...) { } function_arguments(f) function_arguments(f, with_default = FALSE) function_arguments(f, with_ellipsis = FALSE)
This function extracts the body of a function as a single character
.
function_body(fun, braces = FALSE, nchar = getOption("width") - 4)
function_body(fun, braces = FALSE, nchar = getOption("width") - 4)
fun |
[ |
braces |
[ |
nchar |
[ |
A character
, the body of f
.
Other function helpers:
do.call_timed()
,
function_arguments()
,
function_defaults()
,
quiet()
,
timed()
,
try_silent()
,
variable_name()
fun <- mean.default function_body(fun) function_body(fun, braces = TRUE) function_body(fun, nchar = 30)
fun <- mean.default function_body(fun) function_body(fun, braces = TRUE) function_body(fun, nchar = 30)
This function returns the default function arguments (if any).
function_defaults(f, exclude = NULL)
function_defaults(f, exclude = NULL)
f |
[ |
exclude |
[ Can be |
A named list
.
Other function helpers:
do.call_timed()
,
function_arguments()
,
function_body()
,
quiet()
,
timed()
,
try_silent()
,
variable_name()
f <- function(a, b = 1, c = "", ...) { } function_defaults(f) function_defaults(f, exclude = "b")
f <- function(a, b = 1, c = "", ...) { } function_defaults(f) function_defaults(f, exclude = "b")
data.frame
This function groups a data.frame
according to values of one column.
group_data.frame(df, by, keep_by = TRUE)
group_data.frame(df, by, keep_by = TRUE)
df |
[ |
by |
[ |
keep_by |
[ |
A list
of data.frame
s, subsets of df
.
Other data.frame helpers:
delete_columns_data.frame()
,
round_data.frame()
df <- data.frame("label" = c("A", "B"), "number" = 1:10) group_data.frame(df = df, by = "label") group_data.frame(df = df, by = "label", keep_by = FALSE)
df <- data.frame("label" = c("A", "B"), "number" = 1:10) group_data.frame(df = df, by = "label") group_data.frame(df = df, by = "label", keep_by = FALSE)
This function determines whether two objects have the same structure,
identical_structure(x, y)
identical_structure(x, y)
x , y
|
[ |
Either TRUE
if x
and y
have the same structure, and
FALSE
, else.
Inspired by https://stackoverflow.com/a/45548885/15157768.
Other package helpers:
Dictionary
,
Storage
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
unexpected_error()
,
user_confirm()
identical_structure(integer(1), 1L) identical_structure(diag(2), matrix(rnorm(4), 2, 2)) identical_structure(diag(2), data.frame(diag(2)))
identical_structure(integer(1), 1L) identical_structure(diag(2), matrix(rnorm(4), 2, 2)) identical_structure(diag(2), data.frame(diag(2)))
This function provides a standardized response to input checks, ensuring consistency.
input_check_response( check, var_name = NULL, error = TRUE, prefix = "Input {.var {var_name}} is bad:" )
input_check_response( check, var_name = NULL, error = TRUE, prefix = "Input {.var {var_name}} is bad:" )
check |
[ Can also be a |
var_name |
[ |
error |
[ |
prefix |
[ |
TRUE
if check
is TRUE
(or any element in check
is TRUE
, if check
is a list
) . Else, depending on error
:
If error
is TRUE
, throws an error.
If error
is FALSE
, returns FALSE
.
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
unexpected_error()
,
user_confirm()
x <- "1" y <- 1 ### check is successful input_check_response( check = checkmate::check_character(x), var_name = "x", error = TRUE ) ### alternative checks input_check_response( check = list( checkmate::check_character(x), checkmate::check_character(y) ), var_name = "x", error = TRUE ) ### standardized check response ## Not run: input_check_response( check = checkmate::check_character(y), var_name = "y", error = TRUE ) input_check_response( check = list( checkmate::check_flag(x), checkmate::check_character(y) ), var_name = "y", error = TRUE ) ## End(Not run)
x <- "1" y <- 1 ### check is successful input_check_response( check = checkmate::check_character(x), var_name = "x", error = TRUE ) ### alternative checks input_check_response( check = list( checkmate::check_character(x), checkmate::check_character(y) ), var_name = "x", error = TRUE ) ### standardized check response ## Not run: input_check_response( check = checkmate::check_character(y), var_name = "y", error = TRUE ) input_check_response( check = list( checkmate::check_flag(x), checkmate::check_character(y) ), var_name = "y", error = TRUE ) ## End(Not run)
This function inserts a column into a matrix.
insert_matrix_column(A, x, p)
insert_matrix_column(A, x, p)
A |
[ |
x |
[ Can also be a single value. |
p |
[
|
A matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
A <- diag(3) x <- 1:3 insert_matrix_column(A, x, 0) insert_matrix_column(A, x, 1) insert_matrix_column(A, x, 2) insert_matrix_column(A, x, 3) ### also single value x <- 2 insert_matrix_column(A, x, 0) ### also multiple positions insert_matrix_column(A, x, 0:3) ### also trivial case insert_matrix_column(matrix(nrow = 0, ncol = 0), integer(), integer())
A <- diag(3) x <- 1:3 insert_matrix_column(A, x, 0) insert_matrix_column(A, x, 1) insert_matrix_column(A, x, 2) insert_matrix_column(A, x, 3) ### also single value x <- 2 insert_matrix_column(A, x, 0) ### also multiple positions insert_matrix_column(A, x, 0:3) ### also trivial case insert_matrix_column(matrix(nrow = 0, ncol = 0), integer(), integer())
This function inserts a value into a vector.
insert_vector_entry(v, x, p)
insert_vector_entry(v, x, p)
v |
[ |
x |
[ |
p |
[
|
A vector
.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
chunk_vector()
,
map_indices()
,
match_numerics()
,
permutations()
,
split_vector_at()
,
subsets()
,
vector_occurrence()
v <- 1:3 x <- 0 insert_vector_entry(v, x, 0) insert_vector_entry(v, x, 1) insert_vector_entry(v, x, 2) insert_vector_entry(v, x, 3) ### also multiple positions insert_vector_entry(v, x, 0:3) ### also trivial case insert_vector_entry(integer(), integer(), integer())
v <- 1:3 x <- 0 insert_vector_entry(v, x, 0) insert_vector_entry(v, x, 1) insert_vector_entry(v, x, 2) insert_vector_entry(v, x, 3) ### also multiple positions insert_vector_entry(v, x, 0:3) ### also trivial case insert_vector_entry(integer(), integer(), integer())
This function maps indices from an input vector to corresponding sequences of
grouped indices. Each element from the input specifies a group to be mapped
from the sequence, determined by the grouping size n
.
map_indices(indices, n)
map_indices(indices, n)
indices |
[ |
n |
[ |
This function is useful when working with indices arranged in fixed-size
groups, where each group can be referenced by a single index. For example, if
indices are structured in chunks of 3, calling this function with n = 3
will map the corresponding groups of 3 consecutive indices for the given
input indices, see the examples.
An integer
vector
, containing the mapped indices according to the
specified group size.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
chunk_vector()
,
insert_vector_entry()
,
match_numerics()
,
permutations()
,
split_vector_at()
,
subsets()
,
vector_occurrence()
# Example: Map indices based on groups of 3 map_indices(c(1, 3, 5), 3)
# Example: Map indices based on groups of 3 map_indices(c(1, 3, 5), 3)
This function matches function arguments and is a modified version of
match.arg
.
match_arg(arg, choices, several.ok = FALSE, none.ok = FALSE)
match_arg(arg, choices, several.ok = FALSE, none.ok = FALSE)
arg |
[ |
choices |
[ |
several.ok |
[ |
none.ok |
[ |
The un-abbreviated version of the exact or unique partial match if there is
one. Otherwise, an error is signaled if several.ok
is FALSE
or none.ok
is FALSE
.
When several.ok
is TRUE
and (at least) one element of
arg
has a match, all un-abbreviated versions of matches are returned.
When none.ok
is TRUE
and arg
has zero elements,
character(0)
is returned.
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
input_check_response()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
unexpected_error()
,
user_confirm()
This function matches the indices of two numeric vectors as good as possible (that means with the smallest possible sum of deviations).
match_numerics(x, y)
match_numerics(x, y)
x , y
|
[ |
An integer
vector of length length(x)
with the positions of
y
in x
.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
chunk_vector()
,
insert_vector_entry()
,
map_indices()
,
permutations()
,
split_vector_at()
,
subsets()
,
vector_occurrence()
x <- c(-1, 0, 1) y <- c(0.1, 1.5, -1.2) match_numerics(x, y)
x <- c(-1, 0, 1) y <- c(0.1, 1.5, -1.2) match_numerics(x, y)
This function returns the indices of the diagonal elements of a quadratic matrix.
matrix_diagonal_indices(n, triangular = NULL)
matrix_diagonal_indices(n, triangular = NULL)
n |
[ |
triangular |
[ |
An integer
vector
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
# indices of diagonal elements n <- 3 matrix(1:n^2, n, n) matrix_diagonal_indices(n) # indices of diagonal elements of lower-triangular matrix L <- matrix(0, n, n) L[lower.tri(L, diag=TRUE)] <- 1:((n * (n + 1)) / 2) L matrix_diagonal_indices(n, triangular = "lower") # indices of diagonal elements of upper-triangular matrix U <- matrix(0, n, n) U[upper.tri(U, diag=TRUE)] <- 1:((n * (n + 1)) / 2) U matrix_diagonal_indices(n, triangular = "upper")
# indices of diagonal elements n <- 3 matrix(1:n^2, n, n) matrix_diagonal_indices(n) # indices of diagonal elements of lower-triangular matrix L <- matrix(0, n, n) L[lower.tri(L, diag=TRUE)] <- 1:((n * (n + 1)) / 2) L matrix_diagonal_indices(n, triangular = "lower") # indices of diagonal elements of upper-triangular matrix U <- matrix(0, n, n) U[upper.tri(U, diag=TRUE)] <- 1:((n * (n + 1)) / 2) U matrix_diagonal_indices(n, triangular = "upper")
matrix
indicesThis function returns matrix
indices as character
.
matrix_indices(x, prefix = "", exclude_diagonal = FALSE)
matrix_indices(x, prefix = "", exclude_diagonal = FALSE)
x |
[ |
prefix |
[ |
exclude_diagonal |
[ |
A character
vector
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
M <- diag(3) matrix_indices(M) matrix_indices(M, "M_") matrix_indices(M, "M_", TRUE)
M <- diag(3) matrix_indices(M) matrix_indices(M, "M_") matrix_indices(M, "M_", TRUE)
This function merges list
s based on their element names. Elements are
only included in the final output list
, if no former list
has
contributed an element with the same name.
merge_lists(...)
merge_lists(...)
... |
One or more named |
A list
.
Other list helpers:
check_list_of_lists()
merge_lists(list("a" = 1, "b" = 2), list("b" = 3, "c" = 4, "d" = NULL))
merge_lists(list("a" = 1, "b" = 2), list("b" = 3, "c" = 4, "d" = NULL))
This function creates a basic R package logo. The logo has a white
background and the package name (with or without curly brackets) in the
center. The font size for the package name is scaled such that it fits inside
the logo. Type ?oeli
to see an example.
package_logo(package_name, brackets = TRUE)
package_logo(package_name, brackets = TRUE)
package_name |
[ |
brackets |
[ |
A ggplot
object.
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
input_check_response()
,
match_arg()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
unexpected_error()
,
user_confirm()
package_logo("my_package", brackets = TRUE)
package_logo("my_package", brackets = TRUE)
This function creates all permutations of a given vector
.
permutations(x)
permutations(x)
x |
[ |
A list
of all permutations of x
.
Modified version of https://stackoverflow.com/a/20199902/15157768.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
chunk_vector()
,
insert_vector_entry()
,
map_indices()
,
match_numerics()
,
split_vector_at()
,
subsets()
,
vector_occurrence()
permutations(1:3) permutations(LETTERS[1:3])
permutations(1:3) permutations(LETTERS[1:3])
data.frame
This function prints a (possibly abbreviated) data.frame
.
print_data.frame( x, rows = NULL, cols = NULL, digits = NULL, row.names = TRUE, col.names = TRUE )
print_data.frame( x, rows = NULL, cols = NULL, digits = NULL, row.names = TRUE, col.names = TRUE )
x |
[ |
rows , cols
|
[ Printing is abbreviated in the middle. Can be |
digits |
[ Negative values are allowed, resulting in rounding to a power of ten. Can be |
row.names , col.names
|
[ |
Invisibly returns x
.
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_matrix()
,
system_information()
,
unexpected_error()
,
user_confirm()
x <- data.frame(1:10, LETTERS[1:10], stats::rnorm(10)) print_data.frame(x, rows = 7) print_data.frame(x, rows = 7, cols = 2) print_data.frame(x, rows = 7, cols = 2, digits = 1) print_data.frame(x, rows = 7, cols = 2, digits = 1, row.names = FALSE) print_data.frame(x, rows = 7, cols = 2, digits = 1, col.names = FALSE)
x <- data.frame(1:10, LETTERS[1:10], stats::rnorm(10)) print_data.frame(x, rows = 7) print_data.frame(x, rows = 7, cols = 2) print_data.frame(x, rows = 7, cols = 2, digits = 1) print_data.frame(x, rows = 7, cols = 2, digits = 1, row.names = FALSE) print_data.frame(x, rows = 7, cols = 2, digits = 1, col.names = FALSE)
matrix
This function prints a (possibly abbreviated) matrix
.
print_matrix( x, rowdots = 4, coldots = 4, digits = 2, label = NULL, simplify = FALSE, details = !simplify )
print_matrix( x, rowdots = 4, coldots = 4, digits = 2, label = NULL, simplify = FALSE, details = !simplify )
x |
[ |
rowdots |
[ |
coldots |
[ |
digits |
[ |
label |
[ |
simplify |
[ |
details |
[ |
Invisibly returns x
.
This function is a modified version of ramify::pprint()
.
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
system_information()
,
unexpected_error()
,
user_confirm()
print_matrix(x = 1, label = "single numeric") print_matrix(x = LETTERS[1:26], label = "letters") print_matrix(x = 1:3, coldots = 2) print_matrix(x = matrix(rnorm(99), ncol = 1), label = "single column matrix") print_matrix(x = matrix(1:100, nrow = 1), label = "single row matrix") print_matrix(x = matrix(LETTERS[1:24], ncol = 6), label = "big matrix") print_matrix(x = diag(5), coldots = 2, rowdots = 2, simplify = TRUE)
print_matrix(x = 1, label = "single numeric") print_matrix(x = LETTERS[1:26], label = "letters") print_matrix(x = 1:3, coldots = 2) print_matrix(x = matrix(rnorm(99), ncol = 1), label = "single column matrix") print_matrix(x = matrix(1:100, nrow = 1), label = "single row matrix") print_matrix(x = matrix(LETTERS[1:24], ncol = 6), label = "big matrix") print_matrix(x = diag(5), coldots = 2, rowdots = 2, simplify = TRUE)
This function silences warnings, messages and any cat()
or print()
output from R expressions or functions.
quiet(x, print_cat = TRUE, message = TRUE, warning = TRUE)
quiet(x, print_cat = TRUE, message = TRUE, warning = TRUE)
x |
[ |
print_cat |
[ |
message |
[ |
warning |
[ |
Invisibly the expression x
.
This function is a modified version of quiet
.
Other function helpers:
do.call_timed()
,
function_arguments()
,
function_body()
,
function_defaults()
,
timed()
,
try_silent()
,
variable_name()
f <- function() { warning("warning") message("message") cat("cat") print("print") } quiet(f())
f <- function() { warning("warning") message("message") cat("cat") print("print") } quiet(f())
numeric
columns of a data.frame
This function rounds (only) the numeric
columns of a
data.frame
.
round_data.frame(df, digits = 0)
round_data.frame(df, digits = 0)
df |
[ |
digits |
[ Negative values are allowed, resulting in rounding to a power of ten. Can be |
A data.frame
.
Other data.frame helpers:
delete_columns_data.frame()
,
group_data.frame()
df <- data.frame("label" = c("A", "B"), "number" = rnorm(10)) round_data.frame(df, digits = 1)
df <- data.frame("label" = c("A", "B"), "number" = rnorm(10)) round_data.frame(df, digits = 1)
This function samples a correlation matrix by sampling a covariance matrix from an inverse Wishart distribution and transforming it to a correlation matrix.
sample_correlation_matrix(dim, df = dim, scale = diag(dim))
sample_correlation_matrix(dim, df = dim, scale = diag(dim))
dim |
[ |
df |
[ |
scale |
[ |
A correlation matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
sample_correlation_matrix(dim = 3)
sample_correlation_matrix(dim = 3)
This function samples a covariance matrix from an inverse Wishart distribution.
sample_covariance_matrix(dim, df = dim, scale = diag(dim), diag = FALSE)
sample_covariance_matrix(dim, df = dim, scale = diag(dim), diag = FALSE)
dim |
[ |
df |
[ |
scale |
[ |
diag |
[ |
A covariance matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_transition_probability_matrix()
,
stationary_distribution()
sample_covariance_matrix(dim = 3)
sample_covariance_matrix(dim = 3)
This function returns a random, squared matrix of dimension dim
that fulfills the properties of a transition probability matrix.
sample_transition_probability_matrix(dim, state_persistent = TRUE)
sample_transition_probability_matrix(dim, state_persistent = TRUE)
dim |
[ |
state_persistent |
[ |
A transition probability matrix
.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
stationary_distribution()
sample_transition_probability_matrix(dim = 3)
sample_transition_probability_matrix(dim = 3)
This function simulates a Markov chain.
simulate_markov_chain(Gamma, T, delta = oeli::stationary_distribution(Gamma))
simulate_markov_chain(Gamma, T, delta = oeli::stationary_distribution(Gamma))
Gamma |
[ |
T |
[ |
delta |
[ By default, |
A numeric
vector of length T
with states.
Other simulation helpers:
correlated_regressors()
,
ddirichlet_cpp()
,
dmvnorm_cpp()
,
dtnorm_cpp()
,
dwishart_cpp()
Gamma <- sample_transition_probability_matrix(dim = 3) simulate_markov_chain(Gamma = Gamma, T = 10)
Gamma <- sample_transition_probability_matrix(dim = 3) simulate_markov_chain(Gamma = Gamma, T = 10)
This function splits a vector at specific positions.
split_vector_at(x, at)
split_vector_at(x, at)
x |
[atomic()'] |
at |
[ For example, |
A list
.
Based on https://stackoverflow.com/a/19274414.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
chunk_vector()
,
insert_vector_entry()
,
map_indices()
,
match_numerics()
,
permutations()
,
subsets()
,
vector_occurrence()
x <- 1:10 split_vector_at(x, c(2, 3, 5, 7))
x <- 1:10 split_vector_at(x, c(2, 3, 5, 7))
This function computes the stationary distribution corresponding to a transition probability matrix.
stationary_distribution(tpm, soft_fail = FALSE)
stationary_distribution(tpm, soft_fail = FALSE)
tpm |
[ |
soft_fail |
[ |
A numeric
vector.
Other matrix helpers:
check_correlation_matrix()
,
check_covariance_matrix()
,
check_transition_probability_matrix()
,
cov_to_chol()
,
diff_cov()
,
insert_matrix_column()
,
matrix_diagonal_indices()
,
matrix_indices()
,
sample_correlation_matrix()
,
sample_covariance_matrix()
,
sample_transition_probability_matrix()
tpm <- matrix(0.05, nrow = 3, ncol = 3) diag(tpm) <- 0.9 stationary_distribution(tpm)
tpm <- matrix(0.05, nrow = 3, ncol = 3) diag(tpm) <- 0.9 stationary_distribution(tpm)
Provides a simple indexing interface for list elements based on R6. Basically, it allows to store items in a list and to regain them based on identifiers defined by the user.
The output depends on the method:
$new()
returns a Storage
object.
$add()
, $remove()
, and $print()
invisibly return the
Storage
object (to allow for method chaining)
$get()
returns the requested element(s)
$number()
returns an integer
$indices()
return an integer
vector
An identifier is a character
, typically a binary property. Identifiers
can be negated by placing an exclamation mark ("!"
) in front of them.
Identifiers that have been assigned to other elements previously do not need
to be specified again for new elements; instead, a default value can be used.
This default value can be defined either globally for all cases (via the
$missing_identifier
field) or separately for each specific case (via
the method argument).
If desired, the user can be asked for confirmation when adding, extracting,
or removing elements using identifiers. This behavior can be set globally
through the $confirm
field or customized separately for each specific
case via the method argument.
identifier
[character()
]
The identifiers used.
confirm
[logical(1)
]
The default value for confirmations.
missing_identifier
[logical(1)
]
The default value for not specified identifiers.
hide_warnings
[logical(1)
]
Hide warnings (for example if unknown identifiers are selected)?
new()
Initializing a Storage
object.
Storage$new()
add()
Adding an element.
Storage$add( x, identifier, confirm = interactive() & self$confirm, missing_identifier = self$missing_identifier )
x
[any()
]
An object to be saved.
identifier
[character()
]
Pne or more identifiers (the identifier "all"
is reserved to select
all elements).
confirm
[logical(1)
]
Prompted for confirmation?
missing_identifier
[logical(1)
| NA]
The value for not specified identifiers.
get()
Getting elements.
Storage$get( identifier = character(), ids = integer(), logical = "and", confirm = interactive() & self$confirm, missing_identifier = self$missing_identifier, id_names = FALSE )
identifier
[character()
]
Pne or more identifiers (the identifier "all"
is reserved to select
all elements).
ids
[integer()
]
One or more ids.
logical
[character(1)
]
In the case that multiple identifiers are selected, how should they be
combined? Options are:
"and"
(the default): the identifiers are combined with logical and
(all identifiers must be TRUE
)
"or"
: the identifiers are combined with logical or (at least one
identifier must be TRUE
)
confirm
[logical(1)
]
Prompted for confirmation?
missing_identifier
[logical(1)
| NA]
The value for not specified identifiers.
id_names
[logical(1)
]
Name the elements according to their ids?
remove()
removing elements
Storage$remove( identifier = character(), ids = integer(), logical = "and", confirm = interactive() & self$confirm, missing_identifier = self$missing_identifier, shift_ids = TRUE )
identifier
[character()
]
Pne or more identifiers (the identifier "all"
is reserved to select
all elements).
ids
[integer()
]
One or more ids.
logical
[character(1)
]
In the case that multiple identifiers are selected, how should they be
combined? Options are:
"and"
(the default): the identifiers are combined with logical and
(all identifiers must be TRUE
)
"or"
: the identifiers are combined with logical or (at least one
identifier must be TRUE
)
confirm
[logical(1)
]
Prompted for confirmation?
missing_identifier
[logical(1)
| NA]
The value for not specified identifiers.
shift_ids
[logical(1)
]
Shift ids when in-between elements are removed?
number()
Computing the number of identified elements.
Storage$number( identifier = "all", missing_identifier = self$missing_identifier, logical = "and", confirm = FALSE )
identifier
[character()
]
Pne or more identifiers (the identifier "all"
is reserved to select
all elements).
missing_identifier
[logical(1)
| NA]
The value for not specified identifiers.
logical
[character(1)
]
In the case that multiple identifiers are selected, how should they be
combined? Options are:
"and"
(the default): the identifiers are combined with logical and
(all identifiers must be TRUE
)
"or"
: the identifiers are combined with logical or (at least one
identifier must be TRUE
)
confirm
[logical(1)
]
Prompted for confirmation?
indices()
Returning indices based on defined identifiers.
Storage$indices( identifier = "all", logical = "and", confirm = interactive() & self$confirm )
identifier
[character()
]
Pne or more identifiers (the identifier "all"
is reserved to select
all elements).
logical
[character(1)
]
In the case that multiple identifiers are selected, how should they be
combined? Options are:
"and"
(the default): the identifiers are combined with logical and
(all identifiers must be TRUE
)
"or"
: the identifiers are combined with logical or (at least one
identifier must be TRUE
)
confirm
[logical(1)
]
Prompted for confirmation?
print()
Printing details of the saved elements.
Storage$print(...)
...
Currently not used.
Other package helpers:
Dictionary
,
identical_structure()
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
unexpected_error()
,
user_confirm()
### 1. Create a `Storage` object: my_storage <- Storage$new() # 2. Add elements along with identifiers: my_storage$ add(42, c("number", "rational"))$ add(pi, c("number", "!rational"))$ add("fear of black cats", c("text", "!rational"))$ add("wearing a seat belt", c("text", "rational"))$ add(mean, "function") # 3. What elements are stored? print(my_storage) # 4. Extract elements based on identifiers: my_storage$get("rational") my_storage$get("!rational") my_storage$get(c("text", "!rational")) my_storage$get("all") # get all elements my_storage$get(c("text", "!text")) my_storage$get(c("text", "!text"), logical = "or") # 5. Extract elements based on ids: my_storage$get(ids = 4:5) my_storage$get(ids = 4:5, id_names = TRUE) # add the ids as names
### 1. Create a `Storage` object: my_storage <- Storage$new() # 2. Add elements along with identifiers: my_storage$ add(42, c("number", "rational"))$ add(pi, c("number", "!rational"))$ add("fear of black cats", c("text", "!rational"))$ add("wearing a seat belt", c("text", "rational"))$ add(mean, "function") # 3. What elements are stored? print(my_storage) # 4. Extract elements based on identifiers: my_storage$get("rational") my_storage$get("!rational") my_storage$get(c("text", "!rational")) my_storage$get("all") # get all elements my_storage$get(c("text", "!text")) my_storage$get(c("text", "!text"), logical = "or") # 5. Extract elements based on ids: my_storage$get(ids = 4:5) my_storage$get(ids = 4:5, id_names = TRUE) # add the ids as names
This function generates subsets of a vector.
subsets(v, n = seq_along(v))
subsets(v, n = seq_along(v))
v |
[atomic()'] |
n |
[integer(1)'] |
A list
, each element is a subset of v
.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
chunk_vector()
,
insert_vector_entry()
,
map_indices()
,
match_numerics()
,
permutations()
,
split_vector_at()
,
vector_occurrence()
v <- 1:3 subsets(v) subsets(v, c(1, 3)) # only subsets of length 1 or 3 subsets(integer()) # trivial case works
v <- 1:3 subsets(v) subsets(v, c(1, 3)) # only subsets of length 1 or 3 subsets(integer()) # trivial case works
This function returns a list
of general system level information.
system_information()
system_information()
A list
with elements:
maschine
, the model name of the device
cores
, the number of cores
ram
, the size of the RAM
os
, the operating system
rversion
, the R version used
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
unexpected_error()
,
user_confirm()
system_information()
system_information()
This function interrupts an evaluation after a certain number of seconds.
Note the limitations documented in setTimeLimit
.
timed(expression, seconds = Inf, on_time_out = "silent")
timed(expression, seconds = Inf, on_time_out = "silent")
expression |
[ |
seconds |
[ |
on_time_out |
[
|
The value of expression
or, if the evaluation time exceeded, whatever
is specified for on_time_out
.
Other function helpers:
do.call_timed()
,
function_arguments()
,
function_body()
,
function_defaults()
,
quiet()
,
try_silent()
,
variable_name()
foo <- function(x) { for (i in 1:10) Sys.sleep(x / 10) return(x) } timed(foo(0.5), 1) timed(foo(1.5), 1)
foo <- function(x) { for (i in 1:10) Sys.sleep(x / 10) return(x) } timed(foo(0.5), 1) timed(foo(1.5), 1)
This function tries to execute expr
and returns a string with the
error message if the execution failed.
try_silent(expr)
try_silent(expr)
expr |
[ |
This function is a wrapper for try
.
Either the value of expr
or in case of a failure an object of class
fail
, which contains the error message.
Other function helpers:
do.call_timed()
,
function_arguments()
,
function_body()
,
function_defaults()
,
quiet()
,
timed()
,
variable_name()
## Not run: try_silent(1 + 1) try_silent(1 + "1") ## End(Not run)
## Not run: try_silent(1 + 1) try_silent(1 + "1") ## End(Not run)
This function reacts to an unexpected error by throwing an error and linking to an issue site with the request to submit an issue.
unexpected_error( msg = "Ups, an unexpected error occured.", issue_link = "https://github.com/loelschlaeger/oeli/issues" )
unexpected_error( msg = "Ups, an unexpected error occured.", issue_link = "https://github.com/loelschlaeger/oeli/issues" )
msg |
[ |
issue_link |
[ |
No return value, but it throws an error.
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
user_confirm()
This function asks in an interactive question a binary question.
user_confirm(question = "Question?", default = FALSE)
user_confirm(question = "Question?", default = FALSE)
question |
[ |
default |
[ |
Either TRUE
or FALSE
.
Other package helpers:
Dictionary
,
Storage
,
identical_structure()
,
input_check_response()
,
match_arg()
,
package_logo()
,
print_data.frame()
,
print_matrix()
,
system_information()
,
unexpected_error()
This function tries to determine the name of a variable passed to a
function
.
variable_name(variable, fallback = "unnamed")
variable_name(variable, fallback = "unnamed")
variable |
[ |
fallback |
[ |
A character
, the variable name.
Other function helpers:
do.call_timed()
,
function_arguments()
,
function_body()
,
function_defaults()
,
quiet()
,
timed()
,
try_silent()
variable_name(a) f <- function(x) variable_name(x) f(x = a)
variable_name(a) f <- function(x) variable_name(x) f(x = a)
This function finds the positions of first or last occurrence of unique vector elements.
vector_occurrence(x, type = "first")
vector_occurrence(x, type = "first")
x |
[ |
type |
[ |
An integer
vector
, the positions of the unique vector elements.
The ordering corresponds to unique(x)
, i.e., the -th element in
the output is the (first or last) occurrence of the
-th element from
unique(x)
.
Other vector helpers:
check_numeric_vector()
,
check_probability_vector()
,
chunk_vector()
,
insert_vector_entry()
,
map_indices()
,
match_numerics()
,
permutations()
,
split_vector_at()
,
subsets()
x <- c(1, 1, 1, 2, 2, 2, 3, 3, 3) unique(x) vector_occurrence(x, "first") vector_occurrence(x, "last")
x <- c(1, 1, 1, 2, 2, 2, 3, 3, 3) unique(x) vector_occurrence(x, "first") vector_occurrence(x, "last")